

Introduction into Real-Time Network Adjustment with Geo++ GNSMART

Andreas Bagge Gerhard Wübbena, Martin Schmitz

Geo++® GmbH D-30827 Garbsen, Germany www.geopp.de

1

Content

- Introduction
- GNSS Basic Principle
 - Error sources, Absolute Accuracy
- Differential GNSS
 - Spatial Variations, Distance dependent errors
- GNSMART Networks
 - Ambiguity Problem
 - State Monitoring, Modelling of error sources
 - Representation, FKP, VRS, ...
 - Communication Issues

Introduction

GNSS-SMART =

Global Navigation Satellite System

State Monitoring And Representation Technique

- = Technique
 - to determine (State Monitoring) and
- to represent (Representation)

the system status of GNSS Systems

GNSMART

= Geo++ Software implementation of GNSS-SMART

GNSS Principle

Range Observation

Geometric Position from Range Observations

Absolute Positioning

- Position determination of a single ("Stand-Alone") GNSS receiver in system of GNSS
- Accuracy with GPS/GLONASS
 - 5 20 m
 - for many applications not sufficient!
- full influence of all error sources

Error Sources

GNSS Error Sources

9

Error Source	Absolute Influence
Satellite Orbit	2 50m
Satellite Clock	2 100m
lonosphere	0.5 >100 m
Troposphere	0.01 0.5 m
Multipath Code	m
Multipath Phase	mm cm
Antenna	mm cm

-> total: 5 ... 20 m

Differential GNSS

11

Differential ("DGNSS") Positioning

- Determine all error influences • on a known station \rightarrow "Corrections"
- Transmit corrections to the rover
- Apply corrections • \rightarrow reduce error influence
- Compute position •
 - with code ("DGNSS") or
 - with carrier phase ("RTK")

DGNSS Error Sources

DGNSS/RTK Distance Dependency

Geo++®

14

Magnitude of Error Sources

Error source	Absolute influence	Relative influence
Satellite Orbit	2 50m	0.1 2 ppm
Satellite Clock	2 100m	0.0 ppm
lonosphere	0.5 >100 m	1 50 ppm
Troposphere	0.01 0.5 m	0 3 ppm
Multipath Code	m	m
Multipath Phase	mm cm	mm cm
Antenna	mm cm	mm cm

-> total: 1...2 cm + 1...20 ppm

High spatial correlation

Local (Calibration)

GeoInformation Workshop 2004, Istanbul Kultur University, September 20-26, Antalya

Geo++ Absolute Antenna Calibration

- orientation changes of antenna required
- robot to rotate and tilt the antenna
 - dynamic robot guidance
 - automatic operational procedure
 - real-time

Observations on Antenna Hemisphere - 24h Static (on MSD7)

Geo++ Absolute Calibration

RTK: Accuracy, Reliability, Availability

Distance from Reference

RTK-Limits from Distance Dependency

RTK Networks

Distance dependent Errors in RTK Networks

GNSS-SMART Network

GNSMART: User View

- user in the field
 - one way communication link
 - receive all necessary correction/reference data
 - determine absolute RTK position
 - anytime/anywhere
- 1 cm accuracy

1 cm accuracy - everywhere!

Network RTK: Network Tasks

- primary task (pre-requisite): State Monitoring
 - determine distance (and site) dependent errors
 - carrier phase ambiguity resolution
- secondary task: Representation
 - represent network information for user
 - distance dependent errors
 - orbit, ionosphere, troposphere
 - reference station dependent errors
 - multipath, antenna, clock
 - using adequate formats (RTCM, FKP, VRS, SSR)

Carrier Phase Ambiguity

GNSMART State Monitoring

GNSMART State Monitoring

- Complete State Space Model (SSM) for all error sources with carrier phase accuracy
- Multi-station RT network solution
 - Increased redundancy compared to triangle processing!
 - Increased inter-station distances (sparse networks)
 - Robust against single station/communication failures
- undifferenced observables
 - Multiple Stations
 - Multiple Signals (L1,L2,P1,P2,C/A)
- undifferenced ambiguity resolution
 - Low Elevation Ambiguity Fixing

- functional models
 - dynamic processes with temporal and/or spatial stochastic characteristics
 - static parameters
- stochastical models
 - stochastic processes with temporal and/or spatial characteristics

Ambiguity Search

-> GNSS errors must be modelled

GNSMART Representation

FKP Representation

Phase correction

35

FKP Representation in GNSMART

- base signal of reference station (corrections)
- one linear FKP plane for each
 - reference station
 - \Box signal (L_i, L₀)
 - Satellite
- optional: higher order polynomials

Individualized Corrections Virtual Reference Station (VRS)

Communication

GNSS-SMART System structure Central Concept

Communication within Network

- Reference Station to Network Center
 - Telecommunication lines
 - Modem, ISDN
 - Leased Lines
 - Internet
 - local provider (static IP, data integrity?)
 - Intranet
 - Radio Links
 - directed antenna beacons
 - Mobile Phone data (GSM, GPRS, UMTS)
 - Satellite Communication
- Data formats
 - receiver specific raw data
 - 19200bps, bi-directional
 - pre-processed data (RTCM, RTCM++)
 - 2400bps, uni-directional

Communication

Geo++®

Reference/Center to Rover

- Mobile phone (GSM)
 - bidirectional communication (SSR,OSR (FKP,PRS,VRS)
- mobile Internet (GPRS, UMTS)
 - bidirectional or uni-directional
 - NTRIP
 - encryption for
 - access control
 - charging
- "Broadcast" media
 - VHF, TV, Radio, Satellite communication
 - SSR, FKP
 - no VRS,PRS
 - encryption for
 - access control
 - charging

- GPS positioning is affected by absolute and distance dependent errors
- DGPS and local RTK systems can only avoid absolute errors
 - lead to limited RTK (and DGPS) distance
- GNSMART network monitors all errors
 - allowing RTK (and DGPS) applications with
 - homogenous accuracy, reliability and availability
- GNSMART supports all currently used representation modes
 FKP, VRS, PRS
- GNSMART is well prepared for future developments

For **general information** on GNSMART please refer to the Geo++ home page

http://www.geopp.com/gnsmart

For **background publications** refer directly to the Geo++ Publications page

http://www.geopp.com/publications/english/lit_e.htm